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ABsThACr

the; opleraonlof a three-pert paper on scientific database management prepares the ground for

deaiedcteorztin fdata an trg tutrs rnilsof program architecture
deemed necessary tomake ow fiin s fcnrlzddt aaeettechniques are
discussed. General operational requirements of data management systems are presented. and
the notion of activity levels introduced. This part closes with a brief review of the evolution
of data management techniques in the context of computerized structural analysis.
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Section 1

INTRODUCTION

The first pan of this paper [1) describes genea" features of scientific data management from a functional
standpoint. Emphasis is placed on what the data management software is supposed to do for end users of
applications programs. rather than how it does it. On the other hand, the third part is devoted to the analysis
of the implementation of a specific data management system, which is offered as a case study. The description
level in Part III is aimed at fairly experienced developers of advanced application programs rather than at
users.

is intended as a "bridge" between Parts I and I1. The easy-to-follow but superficial descriptive style

R w I has to give way to more precisely stated concepts. Inasmuch as data management technology, and
especially scientific database management, is still in a formative stage, pertinent terminology is far from
standardized. Organizations engaged in some form of data management software development (research
laboratories, software houses, university departments, engineering groups) have evolved "local dialects". Dialect
coalescence is occurring at the physical description level, but wide semantic discrepancies remain at the logical
description level. A substantial portion of Part II is therefore devoted to cataloguing terminology appropriate
for scientific data structures. Although no claims are made as regards the advantages of the proposed
nomenclature, it is hoped that correlations such as presented, for instance, in Table 3 may facilitate the reading
of pertinent literature.

Once semantic questions are put behind, the role played by a data management system in support of an
appliations program. or a network of such programs, is described. The description requires an understanding
of the type of modular architecture that is deemed necessary to make centralized data management effective.
The concept of logical and physical module is introduced in this context. Following this, the function of the
data management system can be precisely defined.

In the last section, the fundamental notion of activity levels is introduced. This is an important feature that
distinguishes the impementason of scientific database management from that of current business data management
systems. Although the hierarchical database model is stressed, the likely appearance of micromanagen and
program contol systems based on relational models is mentioned.

The material covered in this part does require a level of familiarity with the subject which exceeds that assumed
in Part 1. (In particular, a modest acquaintance with the educational references cited in Part I would be
helpful). Nevertheless, most of the discussion is independent of the particular implementation described in
Part IlL

An Appendix contains a brief review of the evolution of data management techniques in the context of
computerized structural analyss, a subject omitted from Part I for space reasons. It is intended to provide
some historical perspective to readers familiar with the computer implementation of finite element methods.

I-I-/11-2 bank)
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Section 2

BASIC TERMINOLOGY

An introductory study of the subject of generalized data management is, in many respects, an exercise in
semantics. This process categorizes and formalizes the description of many objects and activities with which
experienced computer programmers and end users are intuitively familiar.

The terminology used for describing entities associated with data management has varied substantially from
one authority to another, and even from time to time within the same organization. It is therefore appropriate
to present here a summary of the nomenclature that will be needed in Parts II and III. (The definitions are
more precise but sometimes less intuitive than those given in the Glossary of Part 1.)

Knowledgeable readers are advised to proceed directly to Section 3 after a cursory examination of the tables
and figures included in this section; these may serve as backup references while reading the ensuing material.

Data and Storage Structures

mInfortation can be characterized as measurable or quantifiable knowledge. Information recorded in a physical
medium becomes data A digital computer is a machine capable of performing operations on data recorded
in digital or numerical form. Such data is held in storage facilities or memories. A glossary of various terms
commonly used in connection with storage facilities is arranged alphabetically in Table 1.

The data space of a computer is not an amorphous collection of bits and bytes, as it might appear upon looking
at a typical memory dump. There is a logical structure lurking there. i.e., some method in that madnesa. A
set of logically interrelated data objects identified by a name is called a data structure Well-known examples
are scalars arrays, linked lists and tables. Data structures of primary importance in scientific computation are
formally defined in Table 2.

The symbols through which a data structure is encoded in computer memories are said to constitute a storage
structure. For example, a rectangular matrix (a data structure) is usually represented as a string of storage
words holding matrix element values that can be referenced through a base address and a displacement indexing
scheme (a storage structure).

A computer program is the symbolic representation of a plan of computational activities that involve operations
on data structures. These operations take memory-resident data structures as inputs (operands) and produce
new data structures (results) that again reside in memories. The state behavior of the computing machine can
be viewed as the time pattern of the data structures held in memories.

A computer program is realized as a set of machine instructions executed under the supervision of a control
structure that specifies the order in which the operations are to be carried out. The machine component that
executes a program is called an instruction set processor. Most machines have a unified instruction set processor
for operating on arithmetic, logical and symbolic data-types; this hardware component is called the central
processing unit, or CPU.

The set of machine instructions or instruction stream that constitutes a program may be viewed as nothing
more than a specialized data structure. The physical representation of such instructions in a computer memory
is called the sred progrant (The ability for treating instructions and data in a similar fashion is a distinguishing
feature of the modem digital computer). The set of programs that can be used on a particular computer system
is called the software

2-1
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Data Description

Description of data and of relationships between data objects are of two forms: logical and physicaL Physmil
data descriptions refer to the manner in which the data is actually recorded in the storage hardware. Logical
data descriptions refer to the manner in which the data appears to the application programmer or the user of
the data. It is the function of the data management software to convert from the programmer's and and user's
view of the data to the physical reality, and vice-versa. The linkage process is known as binding or data
MOpng%

Logical Data Descriptions

The logical data objects, i.e., data structures that will be considered in this paper can be organized in s logical
hierarchy, as depicted in Figure 1. Formal definitions of the data structures appearing in Figure I are given
in Tables 2, 2A and 23.

As strikingly illustrated by Table 3, the terminology pertaining to the logical data description is presently far
from uniform. Much of the confusion stems from the fact that logical and physical descriptions of data
structures were not clearly differentiated until the early 1970s. This explains why physical-description terms
such as "field", "segment" and "file" still linger in the logical description of many data management systems.
The term "record" is also a nonending source of confusion (some computer dictionaries list six or more
meanings) but it has been left in Table 2, with the qualifier "logical", because of its widespread usage and the
present lack of suitable alternatives.

It should also be noted that the categorization of the fundamental (but elusive) term database is far more

detailed than that used in Part 1.

Physical Description

Several terms that are frequently used in conjunction with the description of storage structures are collected
in Table 4. With the exception of the multipurpose term block, this nomenclature is fairly well accepted.
This reflects the fact that storage hardware technology is well established by now, whereas data management
technology is still in a state of flux.

2-
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Table 1. Terminology Pertaining to Computer Storage Facilities (Arranged Alphabetically)

Equivalent Term(s)
Term and Abbreviations Definition(s)

Address See storage address

Auxiliary storage Peripheral storage Storage facilities of larger capacity and lower cost but
Secondary storage slower access than main storage. Usually accessed via
Backing store (Br.) data channels (cf. I/0 device), in which case data is
External store (Br.) stored and retrieved in physical-record blocks.

Bank A grouping of homogeneous hardware elements
motivated by access circuitry considerations.

Bit An abbreviation of binary digit. The term is extended
to the actual representation of a binary digit in a
storage medium through an encoded two-state device.

Byte I. A generic term to indicate a measurable portion of
consecutive binary digits (bits).

2. The smallest main storage unit addressable by CPU
hardware. In machines with character addressing,
byte and character (def. 2) are synonymous.

Character I. A member of a set of elementary symbols that
constitute an alphabet interpretable by the
computer software.

2. A group of consecutive bits that is used to encode
one of the above symbols.

Direct-access storage Random-access storage A type of storage wherein access to a position, at
which data is to be stored or retrieved, is not
dependent on the position at which data was
previously stored or retrieved.

Extended core storage Large core memory A random-access, solid-state storage medium that
Bulk core shares many of the attributes of main storage, such as
Slow core direct CPU addressing, but with larger access time and
ECS (often) block read/write constraints.

Facilities See storage facilities

File See logical filename, physical file (Table 4)

Input-output device I/0 device An auxiliary storage device connected to the CPU by a
data channel

Logical device See storage device

Logical filename The identifier assigned to a (logical) storage device by
the operating system.

2-3 -
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Table 1. Terminology Pertaining to Computer Storoge Facilities (Arranged Alphabetically) (Continued)

Equivalent Term(s)
Term and Abbreviations Definition(s)

Main storage Primary storage A fast, direct-access, electronic memory hardwired to

High-speed memory the CPU. Holds machine instructions and data that
Core can be accessed in a time of the order of a few
Internal store machine cycles. Historically, the widest used form of
Main storage unit main storage was magnetic core memory; hence the
Small core memory survival of the abbreviated designator "core".

Mass storage Bulk storage A generic term for online, large-capacity, direct-access
auxiliary storage allocatable for public use. Generally
implemented on rotating devices such as magnetic
drums and disk packs.

Memory See storage

Offline storage Remote storage Storage not directly controlled by the CPU.

Online storage Storage under direct control of the CPU. It normally
includes main storage, ECS (if any), mass storage, and
active tape drives.

Page Memory page A unit of allocation of main and auxiliary storage in
Storage page virtual memory computers and simulations thereof.

Permanent storage Nonvolatile storage A type of auxiliary storage that retains information
Catalogued storage beyond the termination of the run-unit(s) that stored

the information.

Random-access storage See direct access storage

Sequential-access Serial storage A type of auxiliary storage (e.g., magnetic tape) in
storage which data can only be accessed in the sequence in

which it is stored.

Storage Memory Any device or medium that is capable of receiving
Store information and retaining it over a period of time, and

allows it to be retrieved and used when required.

Storage address Address i. A label, name or number that identifies the place
where data is stored in a storge device.

2. The part of a machine instruction that specifies the
location of an operand or the destination of a
result.

Storage allocation The process of assigning specific areas of storage to
specific types of data.

2.4
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Table 1. Twaminealc9  Pertaining to Computer Storage Facilities (Arranged Alphabetically) (Continued)

Equivalent Term(s)
Term and Abbreviations Definition(s)

Storalw device (legklal) Logical file A subset of the storage space (def. 1) that is treated as 1
Memory device a named entity by the operating system for purposes of
Name space allocating and releasing storage resources during the
Logical address space execution of a run-unit (task). The term is most often

applied to auxiliary storage facilities.

Storage facilities Hardware available to store data at a computer
installation.

Storage pool Pool A grouping of temporary storage resources for the
Resource pool common advantage of various processes or activities.

Storage space Data space I. The ensemble of storage facilities assigned to a run
Information space at a given moment.
Storage capacity 2. The capacity of a storage device in terms of an
Storage resources appropriate storage capacity unit such as

characters, words, or tracks.

Storage unit A readily detachable part of the storage facilities (e.g.,
a magnetic tape drive).

Temporary storage Volatile storage Storage resources which are discarded during program
execution or on run completion.

Virtual memory Virtual storage The simulation of large .apacity main storage by a
multilevel relocation and paging mechanism
implemented in the hardware.

Word Main storage location The standard main-storage allocation unit for numeric
Cell data. A word consists of a predetermined number of

bits, characters or bytes, which is addressed and
transferred by the computer circuitry as an entity.

Note Terms in italics are those commonly used in this paper.

2-5
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Table 2. Terminology Pertaining to Logical Data Objects (Arranged by Increasing Degree of Logical
Complexity)

Term Definition

Data item The smallest quantum of information that can be referenced by name.

Data aggregate A collection of data items, which is given a name and referred to as a
whole. Five types of data aggregates deserving special mention are
defined in Table 2A.

Logical record A named collection of data items or data aggregates, which constitutes
the basic transaction unit in a logical I/O operation.

Data set A named collection of logical records.

Group A data set containing a special -owner" or "master" record (the group
directory) and a set of member records.

Data library A named collection of data sets residing on permanent storage. It is the
most complex data structure upon which a global database management
system operates.

Database In generic terms, a named collection of data organized according to a
data model and seving a specific purpose. Further categorization of this
term is given in Table 2B.

Database system The set of all databases maintained on a computer installation (or
computer network), which are administered by a common database
maager.

2-7 -
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Table 2A. Special Types of Data Aggregates

Term Definition

Linear array A data aggregate consisting of a set of homogeneous data items, called
array elements, which are selected by a simple indexing scheme (i.e. the
elements can be correlated with the sequence of positive integers.) If the
data items are numeric, a linear array is often called a vector; if
nonnumeric, a string.

Rectangular array A data aggregate consisting of a set of homogeneous linear arrays. If the
linear arrays are vectors, a rectangular array is sometimes called a
rectangular matrix, or matrix for short. Each element of a rectangular
array can be selected by a double indexing scheme.

Packet A data aggregate consisting of a set of heterogeneous but logically related
data items. (Then are called records and structures in the PASCAL and
C programming languages, respectively.)

Linked list A dat aggregate consisting of a string of homogeneous packets
(sometimes called "atoms" in list-processing literature), which are linked
by a pointer field mechanism.

Table A data aggregate consisting of a string of symbol-packet pairs of the form
(sp), where s is a numeric or symbolic key, and p a packet containing a
set of data items associated with s. If the packets reduce to linear arrays,
a table is structurally equivalent to a rectangular array.

I
2-8
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Table 21. Further Categorization of the Term "Database"

Term Definition

Distributed databas A global database physically distributed over several computer systems.

Global database (also A database residing on permanent storage and accessible by a network of
external database) communicating programs and users of such programs. In the hierarchical

structure of Figure 1, a global database consists of one or several data
libraries.

Help database A global database containing program documentation text for online
examination by interactive users of an integrated program network.

Local database A database attached to, and accessible only by, an individual program.

Permanent database In generic terms, a database residing on permanent storage devices.
Specifically, the term applies to global databases as well as local database
segments that may be reused by the generating program (e.g., restart
data).

Project database A global database whose data model responds to the needs of a
project-type enterprise. It is generally organized according to a
hierarchical model.

Temporary database (also The portion of a local database that disappears upon run termination.
transient or volatile Generally consists of auxiliary information, intermediate results and data
database) structures copied to the global database.

Working database (also The database upon which a running program operates at a given moment.
running or operational It embodies its local database as well as possibly sections of the global
database) database.

2-9
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Table 3. Terminology Used to Describe Logical Data Structures in Various Data Management Systems

Source Terminology'

CODASYL2  Data item IData aggregate Record set Database

IB3 Data element Segment Record Data set iData trank

COBOL Elementary Group item Record File
item

IMS' Field Segment File 'Database

MARK IV Field Segment File 'Master file

IDSO Data field Group item Record File Master file

TDMS7  Element Repeating Entry File Database

group

ASKA$ Paragraph Page Book Net Problem
file

AID' Record Group Section

This paper Data item Data aggregate Record Data set Data library Database
Group

Notes:

1. Term in the rightmost three columns are only approximately equivalent
2. Committee on Data System Languages, Data Base Task Group (ACM)
3. Informal use
4. IBM's Information Management System
S. Informatics, Inc.
6. Honywell's Integrated Data Store
I. System Development Corp.'s Time-Sharing Data Management System
g. Schrem-Roy [2) and Schram [3); leftmost two levels available in curr-esnt version.
9. lensen [41.

2-10
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Table 4. Terminology Pertaining to Physical Storage Structures (Roughly Arranged by Increasing
Complexity)

Equivalent Term(s)
Term and Abbreviations Definition(s)

Field Elementary item The smallest unit of information storage that holds
Data fied the value associated with some measure. If a field is

broken down, it loses meaning.

Block Data block 1. A generic term to denote a string of homogeneous
X-block (X - word, storage objects such as characters, words, or
core, tape, disk, etc.) fields, which are considered as a physical entity

for some purpose.
2. A group of adjacent fields that is moved as a

whole from one storage location to another, or
from one storage medium to another.

3. A unit of media allocation that serves as a data
transfer measure.

Setor The smallest addressable unit in a rotating auxiliary
storage device such as drum or disk. A sector
normally consists of one or more words.

Physical record A unit of auxiliary storage media that can be read or
written without need to read and rewrite adjacent
physical records. On rotating devices, a physical
record consists of one or more sectors.

Extent Segment 1. A collection of physical records, which are
Area contiguous in auxiliary storage.

2. A contiguously addressed storage region.
3. The size of any such region.

Track Band 1. The portion of a mechanical storage device such as
drum, disk or tape, which is accessible to a given
read/write station.

2. A unit of rotating auxiliary storage media
characterized by most rapid transfer of
consecutively recorded data.

Cylinder For disk units with multiple read/write heads, all of
the tracks that can be accessed without mechanical
movement of the heads.

Volume Physical file The storage space associated on a one-to-one basis
Tape reel with a logical storage device (cf. Table I).
Disk file
Drum file

2-11/12-12 blank)
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Section 3

PROGRAM ORGANIZATION

Centralized data management is most effective when used in conjunction with a highly-modular, structured
programn ahitecture. Thisection overviews concepts and practices deemed important in this regard. eaders
interested in further details am advised to consult Yourdon and Constantine [51 and Yourdon [61. These
books, to which frequent references will be made, address structured software design and implementation.
respectively. A glossary of terms often used in connection with program organization is provided in Table 5.

Logical Modules end Functional Hlerarchles

Large-scale computer programs ar undoubtedly an example of man's most complex artificial systems. There
is a recursive feature to most system descriptions, and computer programs are no exception. The key element
in a recursive description is the concept of logical module There are various ways of defining a logical module,
each of which reflects to some extent personal preferences as to program organization rules. For our purposes,
the following informal definition should suffice:

A logical module is a software element that performs a well-defined function.

A logical module should not be confused with its physical implementation in terms of machine instructions.
A simple function might be implemented with a three-line code block or a reference to a system library routine.
On the other hand, a complex computational task may demand the development of hundreds of subroutines.
This distinction is elaborated upon in following subsections.

A measure of the complexity of a logical module may be obtained by introducing the concept of module lev
which establishes a "most-basic-to-most-complex" hierarchy, much in the same spirit as the hierarchical
classification of data structures (Figure 1). At the lowest level reside atomic or primitive modules, which
perform the most elementary tasks worth distinguishing in a target description of the program. (They are
primitive in the sense that it is known what they do as a whole, but the details of how it is done are irrelevant.)
The next logical level is populated by modules that utilize primitive modules, and to on until the primary
logical level is reached.

What is a primary logical module? If we are talking about an individual program, it is the program itself.
If we are talking about an integrated program network (IPN), then a primary logical module is mociated
with what an IPN user would see as a primary activity. A clarifying example is provided in Section 4.

The preceding description assumes that a primary logical module can be described in a bottom-up fashion,
i.e., proceeding from the simplest tasks to integrate more complex activity levels. There is an alternative
description strategy known as the top-down approach, which is in many ways preferable In this description
primary tasks ae identified first; then each primary task is broken down into secondary tasks, and so on until
the target primitive level is reached. In the top-down design and implementation process the primitive level
is gradually refined as the program structure takes shape; see, for instance, (3-71.
Physical Modules and Program Modularfty

The term program modularity frequently evokes the restrictive notion of an entity built up of standardized,
"plug-in" units. Although this model may be useful for building tightly-coupled, super-executive-bound IPNs,
it is too restrictive for linked networks. A more relaxed definition of modularity, based on the physical
module concept, will be admitted here.

A physical module is a software element delimited by closed and regular interfaces.

3-1
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An interface is called closed if the transmission of data is effected through address, stack or nue pointers to
the data. Two important variants am the interface contams only call-by-rderence arguments (a main-storael
interface) or names of database-resident data structures (a datbase-closd interface).

An interface is called regular if it protects the environment of the physical module from modifications in its
source code or abnormal run terminations. The term mnimally coupled is used in Ref. [5) in this regard. An
interface can be regularized by enforcing common sense rules such as: (a) no in-place modifications of input
database elements as allowed, (b) all major results are placed on the global database, (c) only one exit point
is allowed, (d) standardized treatment of error or abnormal conditions, and the like.

Exanepke 1. A Fortran subroutine using common blocks for communication with its calling program cannot
be a physical module, because the interface is open. (This does not rule out, however, the use of common
blocks to interface a group of subroutines that together constitute a physical module, in fact, this organization
can be often recommended. What is essential Is to forbid access to such blocks outside of the subroutine group.)

Example 2. A Fortran subroutine using nonstandard returns cannot be a physical module, because its interface
linkage is not regular.

Example 3. A large-scale linear equation solver that replaces the global-database-resident input coefficient
matrix with its factorization is not a physical module because it violates the interface regularity requirement.
(Consider what could happen if the solver errors off.) The interface can be regularized, for instance, by copying
the input matrix on a local database before executing the solver.

A physical module that possesses a gloal-datsbase-claed regular interface and is executed as an hidependent
program will be called a primary phys cal module, or program module for short.

A program will be said to be modular if its organization in terms of physical modules reflects the functional
separation of its activities in term of logical modules.

Self-Consained Modules and Utility Black Boxes

A self-contained module is a physical module that does not reference extraneous software, except perhaps
standard system library routines. A self-contained module effectively embeds all of its supporting sojtware,
even at the cost of source code replication. Thus it can be used as a "plug-in" program-building element.
Primitive physical modules such as a fast vector innerproduct procedure are the simplest examples. A data
management system, a plo-genration library, an eigenvalue extraction package can be offered as examples of
complex self-ownined modules. A helpful way of visualizing a self-contained module during top-down program
development is to think of the magic black box.

A udifty module, or simply utift is a self-contained module that performs a task of actual or potential interest
to a class of programs. A collection of utility modules organized as a software package is a program utlity
Ilbyw (which should not be confused with the term data library defined in Table 2). A good tutorial introduction
to the use of primitive utilities as software-building tools is provided in Kernighan and Plauger 18].

Program Design OMserWl
Suppoee that a programming team is faced with the construction of a database-linked IPN. If no a priori

constraints eanter into the picture, the following design strategy is recommended.

(Dl) Identify primary logical modules.

(D2) Identify information exchanged by logical modules, and construct a data flow diagram.

(D3) Design problem-Oreted data structures to carry the information.

3-2
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(D4) Identify primary physical module required to process the data structures (processors) and to
direct processing activities (controle).

The qualifier "problem-orieted" in (D3) means that the data structures must reflect the physical model. In
other words, the applicatoa drives the data structures and data structures drive the program design. The
insistence upon using problem-related data structures is based on the structured-design observation that this
practice leads to minimally-coupled program networks [5].

Example in a finite element program, the concept of element is fundamental and all data structures should
be built around it Nodes (gid points). which are central in finite difference programs, play only a comparatively
minor role. (In fact, it is possible to design and build finite element codes that do not use the concept of
"node" at all.)

Network Impiementation

The implementation of the IPN design is carried out by building the physical modules. In the database-linking
approach, the use of existing software, and most especially existing utilities, has first priority. If it is necessary
to develop a physical module from scratch, the following implementation steps are recommended.

(11) First, write technical specifications and an users' manual draft for each physical module.

(12) Prepare a test program (conversational if we are dealing with a primary physical module), and run
it with stubs. Iterate with (11).

(13) Finally, code the stubs in top-down fashion.

(Note that this sequence document-test-code, effectively reverses the usual bottom-up implementation sequence:
code-test-document.)

It should be emphasized that these recommendations apply strictly to software products intended for a community
of end users. They are not very relevant for special-purpose or research-oriented software, which is usually
thrown away when done. These simpler programs rarely need any form of centralized data management.

I-iI. .I 11Ie i = l -i ........' '-
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Table 5. Terminology Pertaining to Program Architecture (Alphabetically Arranged)

Term Equivalent Term(s) Definition

Closed interface An interface in which communication is effected by
supplying addresses of data structures. Generally
implemented by a formal calling sequence or by

supplying names of database-resident structures.

Controller Control module A software element whose primary function is to
direct the activities of other software elements.

Converter Filter A kernel processor with a single data structure input.

Interted program Program network A set of controllers and processors (kernel or
network IPN microprocessors) communicating through a common

global data manager.

Interface Entry point set The point (or set of points) in a software element at
which control or data is received or transmitted.

Kernel processor A processor characterized as (a) being self-contained,
(b) generating only one data structure as main
product.

Logical module Transform element The conceptual visualization of a software element as a
Bubble "data machine" that performs a specific function.

Macroprocessor An assembly of kernel processors communicating
through a common local data manager.

Manager (Data) A software element whose primary function is to store,
maintain and retrieve data.

Physical module Module The implementation of a logical module as a cohesive
Box software element with closed and regular interfaces.

Primary physical module Program module A physical module implemented as an independently
executable program.

Procer Computational module A software element whose primary function is the
production of data structures.

Regular interface An interface organized in such a way that the software
element is minimally coupled with its environment, in
the sense of [5].

Self-contained module Software kernel A physical module that does not reference external
Black box software (other than perhaps system-library routines).

Software element Software unit A bounded aggregate of computer-processable
Program component statements identified by a name. (
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Table 5. Terminology Pertaining to Program Architecture (Alphabetically Arranged) (Continued)

Term Equivalent Term(s) Definition

Utility Software tool A self-contained module that provides actual or
potential support to several higher-level modules.

3-5/(3-6 blank)
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Section 4

DATA MANAGEMENT SYSTEMS

Def1nition -

A data management system (DMS) is a self-contained utility module that centralizes activities pertaining to
the management of data structures. The main duties of a scientific data management system are:

Resource Allocation. Assignation of resources to hold storage structures representing the logical data structures
m by the DMS.
Storage and RetrlevaL The transfer of a storage structure, or sections thereof, from one recording medium to

another within a hierarchical memory environment.

CataoLgiUng and Bookkeeping Maintaining an access directory of all data structures under DMS control.

When the set of data structures under control of the DMS constitutes a database (i.e., is endowed with an
appropriate data model), the DMS is called a database management system (DBMS) or database manager
(DBM) for short.

The marriage of a DMS to an applications program results in the appearance of three elements in the data
management game. They are:

User Prmmnt. This term denotes all applications program software external to the DMS. The user program
drives the data manager in a master-slave configuration.

Data Manager. Inasmuch as the DMS is a self-contained module, the slave appears to the master as a black
box with multiple entry points.

Dat Space This term (defined Tab 1) denotes the union of data structures pertaining to the user-progrmu/DMS
complex, as well as the representation of this data in the form of storage structures. (Qualifiers "logical" and
"physical" may be used to distinguish between the two data description viewpoints as necessary.)

The interaction of user program and data manager can be succintly described in twenty words: The data
manager Is the carrier and depositary of Information; the user program is the producer and consumer of
Information

Segregation of the Data Space

When a scientific DMS is runnini in conjunction with a user program, a three-way segregation of the data _
space occurs (cf. Figure 2).

User Nogram's Own Data. The portion of the data space that remains under exclusive control of the user
prowram.

Working Database. The portion of the data space that is placed under "joint administration" of the user
program ad the data manager. The latter is responsible for state management tasks at or above the logical
record level. The user program is responsible for creating and making use of the information contained within
logical records, i.e., activities taking place at the data item and data aggregate levels. (A further segregation
of this space occurs when the distinction between global and local database is introduced, as discussed below.)
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Manager's Own Data. Data maintained by the DMS to effect its own administration and to keep track of
storage structures residing on the working database. This data is generally inaccessible to the user program
except for state reporting (display) operations.

Global and Local Databases

A clear-cut separation between globl and local databases was proposed in Part I as a promising way of
alleviating the problem of physical data dependence. As a bridge to implementation details of Part 11, we
expound further on the functional characterization of this concept.

The global database (or, more precisely, its data model) is what the human user perceives. Global databases
hold not only application data, but operational data such as command language procedures and help files,
which an interactive user can access on a system-wide basis. The key attribute is ease of use. To accomplish
this, human enginering concepts must enter into the design, i.e., the data must be highly structured and
profusely self-described. Inasmuch as database libraries have to survive individual runs, they must reside on
permanent storage devices. (Unfortunately, the latter are notoriously unsuitable for efficient online processing.)

The local database is what a running program uses. The key attribute here is resource utilization efficiency.
To accomplish this, local databases can be conveniently implemented within a virtual storage organization.
This organization can be either hardware-implemented (in virtual memory machines) or software-simulated.

To further fix the ideas, consider a voluminous data structure such as the master stiffness matrix of a finite
element model. On a local database such a matrix might be physically distributed over hundreds or thousands
of pages spread out over main storage, extended core, paging drums or fixed-head disk files. If saved on the
global database, the stiffness matrix would typically reside on a slow-access permanent file device as a sequence
of logical records. The latter configuration simplifies archival on serial access devices such as tapes or cassettes,
and also facilitates file transmission among computers (in the case of a distributed global database).

The configuration of local databases can be expected to be highly volatile as the developer modifies, augments
or "tunes up" processors. On the other hand, global data structures must be subject to strict representation
and self-description standards to insure network operational stability. Here we perceive another role of the
global database. to act as a "buffer" that protects users from day-to-day software modifications.

An Illustrative Example

Conceptual block diagrams such as Figure 2 (or Figures 3 and 4 in Part I), tend to conceal the complexity of
real-life applications. To give a more realistic picture the example of a database-linked, interactive-oriented.
preliminary design system for large space structures is offered as an example. Figure 3 is a data flow diagram
that depicts primary logical modules and major pieces of information exchanged among those modules. Most
of the structured-chart conventions of Ref. (5] have been followed in drawing this diagram. In particular,
logical modules are shown as "bubbles"; while database structures flowing among bubbles are identified by
circle-tailed arrows. (Only some of the latter have been described with annotations so as not to clutter the
picture.) As thinp presently go, this IPN can be categorized as being of intermediate complexity.

Now Figure 3 is a "flat" functional chart, which is suitable for explaining the design process in general terms,
but does not properly portray the implementation of the IPN architecture. A three-dimensional representation,
such as the one sketched in Figure 4, is more appropriate. Three "operational planes" can be distinguished:
(U), the end user's brain; (P), the set of primatr physical modules, or program base; and (D), the global
database (local database planes are omitted for clarity). Two software elements are used to bind these planes.
The global database manager binds (D) and (P). The program control system (PCS) binds (U) and (P).

4-2



LMSC-D673048

Program Control System

Although not treated in this paper, we note that the PCS is simply the implementation of a program base
model, ie., the "lens" through which the end user perceives the physical modules. In an advanced implementation,
the program base is conveniently organized as a relational model, and manipulated through an appropriate
command language based on relational calculus or algebra [9). We hasten to point out that there is no relation
whatsoever between a PCS and what is called a super-executive in Part I. The PCS is only a "consulting
module" that suggests how to run the programs to accomplish certain objectives, but the user remains in control
of final decisions&

4-3
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Section 5

ACTIVITY LEVELS

The Concept of Layered Data Management

A data management system is seldom written to be all things to all programs running on a computer installation,
as are some large-scale operating systems. Performance considerations dictate otherwise. A DMS should be
limited in its domain of applications to classes of programs sharing similar operational characteristics. Examples
of such clauses are: business processing programs, scientific computation programs, real time software and
language processors. The DMS limitations are reflected in the following areas.

I. Types of data structures accepted by the DMS;

2. Procedures for representing such structures and accompanying relationships in computer memories;
and

3. Spectrum of operations allowed on the storage structures.

The restriction of a DMS to serve certain classes of user programs fits within the approach called "design
according to performance specifications" as opposed to "design according to functional specifications". The
former approach emphasizes realistic, clearly defined goals, and uses the simplest techniques to achieve them.
An instance of this approach is the selection of hierarchical data structures for data management. Expanding
goals to encompass a wider range of applications and services risks overcomplexity and inefficiency, to say
nothing of the reaction of application program developers forced to learn to use and deal with a gargantuan
system.

The operational distinction between business and scientific programming is one of the main themes of this
paper. It would be a gross error, however, to regard all scientific programs as equivalent; in fact, many
"throwaway" scientific programs oriented to feasibility studies do not need a DMS at sill A compromise that
permits a scientific DMS to provide a useful range of capabilities while minimizing performance degradation
is the concept of "layered" or multilevel DMS.

A layered DMS possesses several hierarchically self-contained activity leveL. Each level is implemented as a
program module that makes no use of higher levels. The using program developer selects the level according
to estimated requirements. As the level increases, so do the technical capabilities of the DMS and the complexity
of the data structures managed. This increase in functional capabilities is paid in terms of storage overhead
and, in the case of an existing program being DMS-linked, in the need for more or less extensive rewriting of
the original source code.

To specifically illustrate the concept of layered DMS, Figure 5 shows the general configuration of the system
described in Part 11. Five activity levels can be distinguished: I/0 manager, direct-access library manager,
virtual memory manager, resource pool manager, and global database manager. A functional description of
these components is not necessary at this point. Figure 6 shows how the various levels can be used in support
of an user program. We note that in practice it is quite common to start with a very simple configuration
such as the one shown in Figure 6(a), and gradually "move to the top". This process is facilitated by the fact
that the activity levels are self-contained modules.
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Application to Program Networks

The possibility of adapting DMS configurations to user program characteristics is particularly important for
integrated program networks. To illustrate this point, consider the following opposite situations.

Satellite Processom Examples: input data preprocessors, result postprocessors, data converters. Main features:
complex and unpredictable interactions with global database, small volume of internal computations; local
resource management unimportant; close rapport with interactive users. Conclusion: the local data manager
may be very simple (or even entirely missing leaving the global manager in total control).

Number-crunching Processor,, Examples: large-scale equation solvers, eigensolvers, time integrators. Main
features: complex, huge local database; efficient local resource management imperative; relatively simple
interactions with global database. Prescription: sophisticated local data manager, low-level global data manager.

Macro and Micro Date Management

The basic transaction unit of a scientific DMS such as the one depicted in Figure 5 is the logical record. The
DMS does not care about the contents of the records, their interpretation is reserved to the user program. As
noted in Part 1, the DMS operates primarily as a "filing system". This viewpoint is certainly adequate for
computational modules as well as pre- and post-processors modules of application programs as used today.

As scientific programs keep growing in logical complexity and interact further with design and manufacturing
processes, some modules will eventually acquire characteristics typical of information retrieval systems.
Consider, for example, the following two cases.

Result condensatfon. Results of a series of engineering analyses are stored in a data library. The user wants
to access the results, identify critical response conditions, and move them to a result-summary library.

High-level analysis seump The analyst must perform a transient nonlinear analysis of a fluid-structure problem.
He queries (through a progran control system such as the one depicted in Figure 4) a program base for modules
capable of carrying out this task. Then he requests that the PCS fabricate (put together) an assemblage of
such modules. The result is a skeleton control card runstream which can be examined interactively and
eventually submitted to the operating system.

To respond to these type of requests, it is natural to assemble utility modules with the external appearance of
data managers. But then "managers" have necessarily to look inside record contents; in other words, to
operate at the data item or data aggregate level. We call them micro data managers, or micromanagers for
short.

Micromanagers can display many of the attributes of business data management systems, and are most
conveniently organized in terms of relational dam models, This is in contrast to the (macro) managers discussed
so far, which work nicely with hierarchical models such as the one depicted in Figure 1. The main motivation
for relational models lies in the fact that they provide high flexibility in query-oriented systems while still
allowing for &-modular implementation. All data structures handled by such models appear in the form of
tables (defined in Table 2A), which represent n-ary relations among data items.

The concepts just discussed are illustrated in Figure 7. Note that the (macro) data manager appears to the
micromanager as the access method or data retrieval system with respect to the hierarchically-organized data
structures stored in the global and local databases. Configurations of this type will probably e merge in advanced
scientific progams during the 193. Barring the unexpected, this process ought to culminate in the introduction
of artificial Intelligence levels (a level in which the query controller writes programs or modifies its own logic)
in the late 1990. or early 1990. Pioneering efforts along these lines have been recently discussed by Melosh
etaL (10) and Fenves (11].
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Appendix A

DATA MANAGEMENT IN COMPUTERIZED STRUCTURAL ANALYSIS

Computerized structural analysis, especially in the aerospace industry, has traditionally led the way in scientific

data processing. It is sufficient to mention some of the advances that can be credited to this field:

Finite element methods (ca. 1950)

Direct assembly of discrete governing equations (ca. 1956)

Large-capacity direct equation solvers (ca. 1960)

Generalized array processing libraries (ca. 1964)

Integrated program networks for engineering design (ca. 1968)

Distributed engineering analysis (ca 1975)

In briefly reviewing the evolution of centralized data management in scientific computing, it is therefore
sufficient to look at structural anlysis program and integrated networks centered about such programs.

Major Accomplishments

Tale A- correlates major accomplishments in computerized structural analysis technology (left two columns)
against representative advances in general computing technology (hardware & software tools) and centralized
data management.

We call attention to the existence of various time lags, three to be exact.

1. Lag between formulation advances and implementation: 0-2 years for special-purpose codes, 4-6 years
for general-purpose codes.

2. Lag between advances in computer technology and effective utilization of these advances: 2-5 years.

3. Lag between advances in data management technology and effective utilization in scientific programs:
5-10 years.

Resons explaining the larger third gap are offered in Part I. We now proceed to review the application of
data management technology over the past 15 years or so.

Computing Envlronment Evolution

It is safe to say that no attempts at generalized data management, or even resource management, were made
prior to 1965. Most scientific data processing systems used before this date were uniprogrammed machines
wi magnetic tapes as standard auxiliary storage (and archival) medium. As then systems could only process
oae job at a time, there was no incentive in trying to optimize the use of resources other than CPU time. In
fact, a very common practice was to configure production-level structural analyzers in such a way that the
entire high-speed (core) memory was used up, regardless of whether the problem required it or not. The
large procesmable problem was then defined by limitations imposed by the static dimension of Fortran array,.

A.?
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To increase processable problem size, very elaborate link and overlay schemes begin to be used in the early
1960s to "shoehorn" program segments into available high-speed memory. This practice has unfortunately
survived until the present days (programmers' habits change more slowly than computing technology). To a
lage extent, this philoeophy can be considered responsible for highly overlaid scientific program "monsters"
growing out of control of the developers.

Multiprogramming was pioneered by Burroughs and Control Data in the early 1960s. By the late 1960s, it
had become standard on most conventional mainframes (with the exception of IBM, which did not join until
the announcement of the 370 series). The concurrent appearance of time sharing and minicomputers contributed
to a gradual change in the computing environment. Although paged virtual memory appeared also in the early
1960s (on th* ATLAS computer and later on Burroughs'), it does not seem to have significantly influenced
the mainstream of scientific data processing.

By the early 1970s. the need to adapt the program to the problem had been recognized. That is, resources
used should be commensurate with problem size. The popularization of user-allocatable, direct-access mass
storage and (later) the availability of a hierarchy of main storage devices widened the range of resources that
had to be managed.

For excellent accounts of the pre-1970 period in computer technology, see Bell & Newell 121 or Rosen [13].

Resource Management in Matrix Structural Analysis

Early attempts at generalized resource management centered upon dynamic array allocation. Simple core
maaement schemes appeared in various matrix oriented codes written in the period 1962-1970. Typical of

them were SMIS 1141 in the university environment, SNARK (151, FORMAC (161 and RAVES (171 in the
industrial environment. The SMIS program, now superseded by CAL [18), was especially important in that
it set standards for computer-assisted instruction in matrix methods for over a decade, and branched out into
innumerable batch and time-sharin8 versions.

NASTRAN (19, 201 and ASKA E2, 31 can be viewed as representative of the large-capacity, generl-purpose,
executive-linked codes that evolved in the period 1965-1970. In both cases, resource data management and
matrix processing logic were entwined by today's standards. It must be remembered, however, that finite
element structural analysis was often labelled "matrix methods" at the time, i.e., the appearance (direct algebraic
formulation) was mistaken by the essence (approximation theory).

The architecture of NASTRAN was fairly advanced for the time during which design specifications were

written (early 1960s). The concept of super executive was carried out to extremes. The NASTRAN executive
in fact replaced the operating system and embodied both input/output supervisors and program linkage editors.
This drastic measure was required because the operating systems of the time failed to meet ambitious design
specifications such as management of online devices and multilevel program segmentation.

The fundamental NASTRAN data structure was the "matrix column record". This unhappy decision, in
retrospect a spinoff of the Fortran column-by-column array storage and tape-like 1/O mentality, succeeded in
tying up the program into knots. It is an example of how confusion of logical and physical data structures
can result in expensive mistakes. (In all fairness, the distinction was not well understood at the time.)

The ASKA data management system was firmly tied up to the "hypermatrix" concept. This is probably an
outgrowth of the drum-paged UNIVAC machine on which the first version evolved in the late 1950. The
page-oriented, multilevel treatment of the data displays, however, far more logical flexibility than NASTRAN.
In the "dam retrieval system" described in (31, a three-level tree structure appears (expanded to five in later
versions). The distinction between togical and physical data descriptions facilitated adaption to different
problem-solving and machine environments.
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Recent Trends and Developments

Modern database management (by which is meant emphasis on logical and conceptual data descriptions) timidly
appeared during the early 1970s on a handful of structure analyzers. Although steady progress has been
recorded since, the general technology level is far from that achieved in business data processing. Two main
trends, related to the "degree of closeness" deemed desirable between data management and applications, can
be distinguished.

Applications-Independent Data Management The DMS is designed as a self-contained, separable utility logically
divorced from the meaning of the data it manages. This context-free viewpoint is stressed in this paper. It
is reinforced by current trends in structured programming (exact tools for each level, functional cohesiveness,
minimal context coupling), but is tempered by the performance considerations mentioned in Section 5.

Applications-Dependent Data Management. The DMS, although centralized, is "made to order" to support a
specific program, or program network. The manager operates on the basis of the context of the data it sea,
and cannot be easily separated from the applications software.

How can these types be recognized? A simple "patch test" (apologies to Bruce Irons) can be applied. Try
to visualize the DMS in question as being linked to support software of progressively more foreign nature:
another structural analyzer, a finite-difference hydrodynamics code, a preliminary design package, a manufacturing
control system, a batch payroll program, a real-time airline reservations system. Where can one draw the
line? The further the "patch" works, the more context-free the manager is. (Of course, a positive answer
does not imply that such a liaison would be ever desirable, as performance considerations intervene.)

In practice pure archetypes are seldom observed while hybrids abound. Moreover, in the case of a multilevel
data manager it is common to see highly context-free low-level components serving application-oriented higher
levels. An advanced example of this (intelligent analysis controller) has been depicted in Figure 7.

Representative examples of the context-free organization are the AID manager (41, the data-complex managers
of the SPAR network (21] and its successor EAL (22]. Representative examples of the highly applications-couped
case are GIFTS 1231 and ITS (24]. The POLO-FINITE system (25, 26] and the under-development IPAD
system (271 can be offered as examples of a middle-of-the-road approach.

The functional distinction between local and global databases is a post-1975 concept conceived by the author
while thinking about the lessons of Watergate (i.e., the two-tier image perception problem). Further elaborations
of the theme of disjoint global databases can be expected in the near future as distributed and personal computing
finally engulfs computerized engineering analysis.
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Table A-1. Evolution of Computerized Structural Analysis

Structural Analysis Technology Computer Technology
Year

Formulation Implementation General Data Management

1950 Matrix formulation Equations set up by UNIVAC II
Force method analyst Magnetic tapes

Paging drums

Matrix subroutines

Direct stiffness riethod Programmed equation Fortran I
generation IBM 70)4

Incremental nonlinear High-order languages Monitor systems
analysis 1/O channels

I BM 7090
Block solvers

Iterative solvers
1960 Modal dynamics

Substructuring Disk files
Variational formulation Virtual memory

Operating systems
Band solvers

Refined elements Multiprogramming
Fortran IV

Direct time integration Resource
dynamics CDC 6600 management

Iterative nonlinear General purpose linear IBM 3b0
analysis analyzers

Time sharing
Isoparametrics Problemn-oriented Hierarchical

languages Interactive graphics databases
Reduced integration

Profile solvers Permanent disk- Network databases
1970 resident files DBTG Report

Mathematical Wavefront solvers Minicomputers Relational databases
foundations General purpose

nonlinear analyzers

Boundary elements Program networks Large scale

integration

Database-linked IPN Microcomputers

Distributed Database machines

processing

A-4



LMSCD673048

A-3/(6 blank)



L


